管道施工用鋼管 2.1 管線鋼的發(fā)展歷史
早期的管線鋼一直采用C、Mn、Si型的普通碳素鋼,在冶金上側(cè)重于性能,對化學成分沒有嚴格的規(guī)定。自60年代開始,隨著輸油、氣管道輸送壓力和管徑的增大,開始采用低合金高強鋼(HSLA),主要以熱軋及正火狀態(tài)供貨。這類鋼的化學成分:C≤0.2%,合金元素≤3~5%。隨著管線鋼的進一步發(fā)展,到60年代末70年代初,美國石油組織在API 5LX和API 5LS標準中提出了微合金控軋鋼X56、X60、X65三種鋼。這種鋼突破了傳統(tǒng)鋼的觀念,碳含量為0.1-0.14%,在鋼中加入≤0.2%的Nb、V、Ti等合金元素,并通過控軋工藝使鋼的力學性能得到顯著_。到1973年和1985年,API標準又相繼增加了X70和X80鋼,而后又開發(fā)了X100管線鋼,碳含量降到0.01-0.04%,碳當量相應地降到0.35以下,真正出現(xiàn)了現(xiàn)代意義上的多元微合金化控軋控冷鋼。
我國管線鋼的應用和起步較晚,過去已鋪設的油、氣管線大部分采用Q235和16Mn鋼。“六五”期間,我國開始按照API標準研制X60、X65管線鋼,并成功地與進口鋼管一起用于管線敷設。90年代初寶鋼、武鋼又相繼開發(fā)了高強高韌性的X70管線鋼,并在澀寧蘭管道工程上得到成功應用。
2.2 管線鋼的主要力學性能
管線鋼的主要力學性能為強度、韌性和環(huán)境介質(zhì)下的力學性能。
鋼的抗拉強度和屈服強度是由鋼的化學成分和軋制工藝所決定的。輸氣管線選材時,應選用屈服強度較高的鋼種,以減少鋼的用量。但并非屈服強度越高越好。屈服強度太高會降低鋼的韌性。選鋼種時還應考慮鋼的屈服強度與抗拉強度的比例關系—屈強比,用以_制管成型質(zhì)量和焊接性能。
鋼在經(jīng)反復拉伸壓縮后,力學性能會發(fā)生變化,強度降低,嚴重的降低15%,即包申格效應。在定購制管用鋼板時_考慮這一因素??刹扇≡谠摷墑e鋼的_小屈服強度的基礎上提高40-50MPa。
鋼材的斷裂韌性與化學成分、合金元素、熱處理工藝、材料厚度和方向性有關。應盡可能降低鋼中C、S、P的含量,適當添加V、Nb、Ti、Ni等合金元素,采用控制軋制、控制冷卻等工藝,使鋼的純度提高,材質(zhì)均勻,晶粒細化,可提高鋼韌性。目前采取方法多為降C增Mn。
管線鋼在含硫化氫的油、氣環(huán)境中,因腐蝕產(chǎn)生的氫侵入鋼內(nèi)而產(chǎn)生氫致裂紋開裂。因此輸送酸性油、氣管線鋼應該具有低的含硫量,進行有效的非金屬夾雜物形態(tài)控制和減少顯微成份偏析。管線鋼的硬度值對HIC也有重要的影響,為防止鋼中氫致裂紋,一般認為應將硬度控制在HV265以下。
2.3 管線鋼的焊接性
隨著管線鋼碳當量的降低,焊接氫致裂紋敏感性降低,為避免產(chǎn)生裂紋所需的工藝措施減少,焊接熱影響區(qū)的性能損害程度降低。但由于焊接時管線鋼經(jīng)歷著一系列復雜的非平衡的物理化學過程,因而可能在焊接區(qū)造成缺陷,或使接頭性能下降,主要是焊接裂紋問題和焊接熱影響區(qū)脆化問題。
管線鋼由于碳含量低,淬硬傾向減小,冷裂紋傾向降低。但隨著強度級別的提高,板厚的加大,仍然具有_的冷裂紋傾向。在現(xiàn)場焊接時由于常采用纖維素焊條、自保護藥芯焊絲等含氫量高的焊材,線能量小,冷卻速度快,會增加冷裂紋的敏感性,需要采取必要的焊接措施,如焊前預熱等。
焊接熱影響區(qū)脆化往往是造成管線發(fā)生斷裂,誘發(fā)災難性事故的根源。出現(xiàn)局部脆化主要有兩個區(qū)域,即熱影響區(qū)粗晶區(qū)脆化,是由于過熱區(qū)的晶粒過分長大以及形成的不良組織引起的,多層焊時粗晶區(qū)再臨界脆化,即前焊道的粗晶區(qū)受后續(xù)焊道的兩相區(qū)的再次加熱引起的。這可以通過在鋼中加入_量的Ti、Nb微合金化元素和控制焊后冷卻速度獲得合適的t8/5來_韌性。